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Solutions for steadily translating localized vortical structures, or modons, are sought in
the framework of a 1½-layer rotating shallow-water (RSW) model on the f -plane. In
this model, the fluid is assumed to rotate at a constant rate and to be composed of an
active finite-depth layer and a passive infinitely deep layer. The focus is on the smooth
intense modons, in which the potential vorticity field is continuous, and the pressure
(hence, the active-layer thickness) and velocity are smooth, while inertial effects and
deviations of the active-layer thickness from the static level are considerable. The
problem is solved numerically employing a Newton–Kantorovich iterative procedure,
Fourier–Chebyshev spectral expansion and collocations. The numerics are preceded
by a theoretical modon design discussion that includes: derivation of fundamental
modon invariants; distinction between the flow in the trapped-fluid region and the flow
outside it; and the boundary conditions at the separatrix, the streamline demarcating
the two regions. Also, some basic distinctions from the quasi-geostrophic modons are
discussed, and an asymptotic analysis of the RSW modon far-field characteristics is
carried out. This analysis reveals that an RSW modon must propagate more slowly
than inertia–gravity waves. In smooth modons, the requirement that the active-layer
thickness should be positive imposes an even stronger restriction on the allowed
translational speed. To enable the use of Fourier–Chebyshev series, only the modons
with circular separatrices are considered. The numerical iterative procedure is
initialized by an analytical quasi-geostrophic dipolar modon solution; accordingly,
the obtained RSW modons appear as cyclone–anticyclone pairs. Computations show
that the allowed maximal translational speed monotonically decreases as a function of
the modon size and, for reasonable sizes, is appreciably smaller than the gravity-wave
limit. As distinct from quasi-geostrophic modons, the RSW modons with circular
separatrices display nonlinearity of the potential vorticity (PV) vs. streamfunction
relation, and the cyclone–anticyclone asymmetry: while the integral mass anomaly in
the modon is zero, the cyclone is more intense and compact than the anticyclone.

1. Introduction
We use the term ‘modon’ (introduced by Stern 1975) to designate localized vortices

that propagate steadily without changing their parameters. Anti-symmetric dipoles in
two-dimensional flows represent a classical example of a modon. The first solution
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that (using the contemporary terminology) can be categorized as a modon was
suggested independently by Lamb (1895) and Chaplygin (1903). This is the well-
known translating circular dipole solution to the Euler equations in two dimensions.
The interest in this solution was rekindled in the 1970s (when the wide-ranging work
on mesoscale, or synoptic, oceanic eddies started) after the modon publications of
Stern (1975) and Larichev & Reznik (1976a, b) have appeared. During the past three
decades, considerable progress has been made in developing the modon theory applied
to plasma and geophysical (rotating and stratified) fluids.

Until now, the modons were studied using the quasi-geostrophic (QG) approxima-
tion, which is based on two assumptions: the deviation of isopycnal surfaces (or,
alternatively, of the layer interfaces in a layered model) from their static states is
small; and the Rossby number (which characterizes the magnitude of the nonlinear
inertial forces relative to the Coriolis force) is also small (Pedlosky 1987). In the
QG approximation, the equations of momentum conservation and continuity can be
reduced to one equation of the potential vorticity (PV) conservation. If at least one of
the above conditions is violated, more complex models should be used, the 1½-layer
rotating shallow-water (RSW) model being one of them. Within this model, the fluid
is assumed to be composed of two layers of different densities, one of the layers being
infinitely deep and, therefore, passive. In oceanographic or meteorological applicat-
ions, the active layer is the upper or the lower layer, respectively. It is essential that,
in the rotating shallow-water model, the variation in the thickness of the active layer
is allowed to be comparable to the layer thickness itself. Therefore, although the
horizontal velocity components are assumed depth-independent in the RSW model,
the variations of the active-layer thickness can be significant in the mass conservation.
A barotropic interpretation of the same model is a single fluid layer whose thickness
can vary significantly owing to the change in the free-surface elevation.

When a travelling modon is considered in a co-moving frame of reference, two
areas can naturally be distinguished, the interior (or trapped-fluid) region where the
streamlines are closed, and the exterior region where they are open (Larichev & Reznik
1976a; Flierl et al. 1980). The closed streamline that demarcates the two regions is con-
ventionally termed the modon separatrix. Although, in any steady-state flow, PV and
the streamfunction are functionally related, markedly, in travelling modons, the func-
tionals are different for the exterior and interior regions (Larichev & Reznik 1976a).
Accordingly, in the above-referenced analytical modon solutions where the separatrix
is a circle, the exterior and interior flows are derived separately with their subsequent
matching at the separatrix. This tactic proves to be beneficial also when searching
for non-circular modons by numerical methods (for discussion see, Kizner, Berson
& Khvoles 2003a; Khvoles, Berson & Kizner 2005). The pressure and velocity fields
are required to be continuous, whereas PV (which is conserved by any fluid particle)
can be discontinuous at the separatrix, because the PV values calculated from outside
and inside, while being constant at the separatrix, need not necessarily be equal. In
many cases, by special fitting of the modon parameters, the continuity of PV can also
be achieved. The localization of a modon implies that its kinetic momentum, energy,
etc. are finite; thus, a modon solution is characterized by a sufficiently fast decrease
of the flow characteristics at infinity, i.e. with increasing distance from the separatrix.

Under the rigid-lid condition, that is, when the free-surface elevation is negligible,
the Lamb–Chaplygin solution remains valid on a barotropic f -plane, where the
Coriolis parameter f associated with the fluid rotation is constant. The barotropic
solutions of Stern (1975) and Larichev & Reznik (1976a, b) are valid on the β-plane,
where the gradient β of the Coriolis parameter is assumed to be constant. The first of
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these solutions represents a standing dipole under the rigid-lid condition, whereas the
second is a free-surface translating modon. In travelling β-plane and free-surface (or
1½-layer) f -plane QG modons, the decrease of the modon characteristics at infinity
is exponential; thus the localization is truly high. Inspired by the works of Stern
and Larichev & Reznik, a number of exact and asymptotic barotropic solutions were
suggested, describing travelling modons on the f - and β-planes and in spherical
geometry (Larichev & Reznik 1976b; Berestov 1981; Verkley 1984, 1987; Tribbia
1984; Nycander 1988). Several publications were devoted to numerical construction
of barotropic modon solutions (Boyd & Ma 1990; Haupt, McWilliams & Tribbia
1993; Verkley 1993; Khvoles et al. 2005). Laboratory experiments show that circular
modon solutions describe adequately some weak dipole flows produced in a fast
rotating fluid (e.g. Flierl, Stern & Whitehead 1983; Flór & van Heijst 1994), although
numerical simulations (Kizner et al. 2002, 2003a; Khvoles et al. 2005) and recent
laboratory experiments (unpublished) suggest that modons with elliptical separatrices
can be of practical interest.

Apart from Stern’s dipole, standing β- and f -plane antisymmetric dipolar vortical
solutions were suggested by Hesthaven et al. (1995) and Khvoles et al. (2005). In
fact, to balance the self-propulsion natural in vortex pairs, such a dipole must possess
some abnormal qualities (which probably explains why emergence of standing dipoles
was never observed in simulations or laboratory experiments, Khvoles et al. 2005).
In Stern’s β-plane circular solution and in the standing elliptical β-plane solution
of Khvoles et al. (2005), this is the vorticity jump across the dipole edge (related
to the absence of flow outside the dipole). The peculiarity of the f -plane modon of
Hesthaven et al. (1995), in which the uniqueness of the PV vs. streamfunction relation
is postulated, is in the absence of a separatrix and the existence of unlimited areas
enclosing the dipole, where the vorticity is oppositely signed. That is, in terms of
vorticity, unlike the Lamb–Chapygin modon, the modon of Hesthaven et al. is not
confined to a finite-size area. Modons of both Stern and Hesthaven et al. were shown
to be strongly unstable (Kizner & Berson 2000; Hesthaven et al. 1995). All these
explain our special interest in translating modons.

Along with barotropic modons, several explicit baroclinic QG modon solutions –
analytical, asymptotic, and numeric – have been proposed (Berestov 1979; Flierl et al.
1980; Kizner 1984, 1986a, b, 1988, 1997; Neven 1994; Pakyari & Nycander 1996;
Reznik & Sutyrin 2001; Kizner et al. 2003b; Khvoles, McWilliams & Kizner 2007).
The first two-layer QG modon solutions on the β-plane were suggested by Flierl et al.
(1980). These are the so-called modon-with-a-rider constructions with a PV jump
across the separatrix. Such a solution appears as a sum of a barotropic Larichev–
Reznik dipole and a circularly symmetric baroclinic monopole (rider). The addition
of a rider makes the flow in each layer asymmetric about the axis of the modon
translation. Flierl et al. (1980) considered also barotropic solutions of this kind; as
discovered by Meleshko & van Heijst (1994), the first barotropic dipole-plus-monopole
vortical solution was suggested by Chaplygin (1903). Kizner (1984) suggested smooth
quasi-geostrophic baroclinic β-plane solutions of the modon-with-a-rider type
marked by continuity of the PV field. These solutions can bear any baroclinic mode
(or a number of baroclinic modes) and can be fitted to any density stratification,
both continuous and multi-layer, thus being relevant to mesoscale eddies observed in
the ocean and atmosphere (Kizner 1997; for application to intra-thermocline vortices
see Kizner et al. 2002). Importantly, an anti-symmetric barotropic dipole modon is
always smooth in the above sense, whereas PV in a barotropic modon-with-a-rider
solution is necessarily discontinuous. Baroclinicity renders an extra degree of freedom
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to a modon solution, because the constant value assumed by a baroclinic mode of the
co-moving streamfunction at the separatrix, in general, can be set arbitrarily. Special
fitting of this constant enables the construction of smooth baroclinic solutions, i.e.
those with continuous PV (Kizner et al. 2003a, b; Khvoles et al. 2007). As will be
seen below, this idea is feasible not only in the QG framework. Based on numerical
evidence, PV continuity appears to be essential for the modon stability: whereas
smooth modons prove to be quite robust, all known modon solutions (whether
barotropic or two-layer) with vorticity jumps across separatrices are strongly unstable
(Swenson 1987; Kizner & Berson 2000; Kizner et al. 2003a; Khvoles et al. 2005).

As the above brief review implies, during the past three decades, the theory of mod-
ons in the QG approximation has been developed extensively. However, no theore-
tical work devoted to ageostrophic modons has been carried out so far. There is only
some preliminary numerical (Konshin & Shapiro 1988; Pallas-Sanz & Viudez 2007)
and experimental (Sous, Bonneton & Sommeria 2004) indication of the possibility of
existence of ageostrophic modons.

Our paper is devoted to clarification of the question of the existence of RSW
modons on the f -plane. We provide analytical arguments in favour of the existence
of localized steadily translating vortical structures; present a numerical algorithm
aimed at the construction of explicit (steady-state) RSW modon solutions; and, using
this algorithm, produce a broad spectrum of RSW modons. The numerical algorithm,
which is based on a Newton–Kantorovich successive-linearization procedure supple-
mented with Fourier–Chebyshev approximation of the solution and collocation,
allows construction of the modon solutions at quite a good accuracy. First, the
solution outside the separatrix is constructed and the boundary conditions for
the interior problem are established; thereafter, the interior solution is found. To
enable the Fourier expansion in the azimuth angle, we assume the separatrix to be
a circle. As with the baroclinic component in two-layer QG modons, the constant
streamfunction value at the separatrix can be set arbitrarily, while special fitting of
this constant provides modons with continuous PV fields. Such modons constitute
a two-parameter family, the parameters being the separatrix radius L and the
modon’s translational speed U . Like QG modons, the simplest RSW modon is a pair
cyclone–anticyclone. The ageostrophicity in smooth modons is apparent primarily
in the cyclone–anticyclone asymmetry, the cyclone being more compact and having
a stronger peak PV than the anticyclone. With increasing U and L this asymmetry
enhances, the minimal thickness of the active layer (in the cyclone centre) decreases,
and the cyclone peak PV increases. The requirement that the thickness of the active
layer in the cyclone must be positive imposes a constraint on parameters U and L.

In § 2, the theoretical background is provided, including the basic equations and
the energy and PV invariants. The main principles underlying the construction of
RSW modons and the equations and boundary conditions for the exterior and
interior regions are discussed in § 3. In this section, we also present the circular
QG modon which serves as a prototype for RSW modons. Asymptotic considerations
presented in § 3 testify in favour of the existence of highly localized steadily translating
vortical structures (i.e. two-dimensional solitons) in the RSW approximation. In
§ 4, the numerical algorithm is described. The modon solutions resulting from our
computations are presented and discussed in § 5. The main results are summarized in
§ 6.
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2. Theoretical background
2.1. Steady-state equations

Consider a two-layer fluid rotating at a constant angular velocity Ω . One of the layers
(say, the lower one) is assumed to be infinitely deep, hence passive. The motion in the
active (upper) layer is assumed to be hydrostatic, and the horizontal velocities to be
depth independent. The governing equations of this model are:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v + g′ ∂h

∂x
= 0, (1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u + g′ ∂h

∂y
= 0, (2)

∂h

∂t
+

∂

∂x
(uH ) +

∂

∂y
(vH ) = 0. (3)

Here, u and v are the x- and y-components of velocity; f = 2Ω = const is the Coriolis
parameter (the f -plane approximation); H = H0 + h is the active-layer thickness, H0

and h being the mean thickness and the deviation from it; and g′ is the reduced
gravity (i.e. the acceleration due to gravity multiplied by the density jump between
the layers, divided by the lower-layer density). This model is known as the 1½-layer
RSW, or reduced gravity approximation.

We are searching for modons, i.e. highly localized vortex structures that translate
steadily without any change in their characteristics. For definiteness we assume that
a modon travels along the x−axis at a constant speed U , so that the variables u, v

and h are functions of x − Ut and y only. Thus, in a co-moving frame of reference,
the flow is stationary and obeys the equations:

(u − U )
∂u

∂x
+ v

∂u

∂y
− f v + g′ ∂h

∂x
= 0, (4)

(u − U )
∂v

∂x
+ v

∂v

∂y
+ f u + g′ ∂h

∂y
= 0, (5)

∂

∂x
[(u − U )H ] +

∂

∂y
(vH ) = 0. (6)

2.2. Energy and potential vorticity conservation

Although, according to (3), the flow in the RSW model is generally divergent or
convergent, for a steady-state flow considered in the co-moving frame of reference,
(6) allows the introduction of a co-moving streamfunction Ψ :

(u − U )H = −∂Ψ

∂y
, vH =

∂Ψ

∂x
. (7)

Thus, the energy and potential vorticity conserved in each fluid column confined in
the active layer are functions of Ψ . It can easily be verified that these functions are
related to each other (Malanotte-Rizzoli 1982):

B =
(u − U )2

2
+

v2

2
+ g′h + Ufy = F (Ψ ), (8)

P =
ζ + f

H
≡ Q +

f

H0

=
dF (Ψ )

dΨ
, Q =

1

H0 + h

(
ζ − f

H0

h

)
. (9)
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Here, B is the Bernoulli function (also referred to as energy); P is the PV; F (Ψ ) is
some (unknown at the moment) differentiable function of Ψ , and

ζ =
∂v

∂x
− ∂u

∂y
(10)

is the relative vorticity.
Using (7)–(10), variables B and Q can be expressed in terms of Ψ , and h as

B =
1

2H 2

[(
∂Ψ

∂x

)2

+

(
∂Ψ

∂y

)2]
+ g′h + Ufy, (11)

Q =
�Ψ

H 2
− 1

H 3

(
∂h

∂x

∂Ψ

∂x
+

∂h

∂y

∂Ψ

∂y

)
− f

H0

h

H
, (12)

where � is the Laplacian operator in two dimensions. The existence of functional
relations between Q and B , on the one hand, and Ψ , on the other (see (8) and (9)),
implies the following equations:

J (Ψ, B) = 0, (13)

J (Ψ, Q) = 0, (14)

where J is the Jacobian operator. Note that the reverse assertion is false: generally,
(13) and (14) do not imply (8) and (9) and, hence, (4)–(6), because they do not
guarantee that dB(Ψ )/dΨ = P (Ψ ).

2.3. Null integral mass anomaly in a modon

In addition to the above-listed characteristics of steadily translating RSW flows, a
modon must have a zero integral mass anomaly. To prove this statement, we multiply
both parts of (4) and of (6) by H and u, respectively, and sum the results to obtain:

−U
∂(Hu)

∂x
+

∂(Hu2)

∂x
+

∂(Huv)

∂y
− f Hv + g′H

∂h

∂x
= 0. (15)

In a similar way, an analogous equation is obtained from (5) and (6):

−U
∂(Hv)

∂x
+

∂(Huv)

∂x
+

∂(Hv2)

∂y
+ f Hu + g′H

∂h

∂y
= 0. (16)

Eliminating h from (15), (16) by cross-differentiation and using (6) yields:

−U
∂

∂x

[
∂(Hv)

∂x
− ∂(Hu)

∂y

]
+f U

∂h

∂x
+

∂2(Huv)

∂x2
− ∂2(Huv)

∂y2
− ∂2[H (u2 − v2)]

∂x∂y
= 0. (17)

Multiplication of (17) by x and integration over the plane, under the condition that
u, v and h and their first derivatives go to zero at infinity faster than 1/r2, results in
the following equation: ∫

hdx dy = 0. (18)

Equation (18) means that the total mass anomaly in an RSW modon must be zero.
In this sense, RSW modons are no different from QG modons (e.g. Flierl et al. 1980).

2.4. Non-dimensionalization

All explicit modon solutions suggested up to now fall into the category of QG
modons. As will be demonstrated below (§§ 4 and 5), by using a computational
continuation approach, we produce modon solutions that cover the whole spectrum
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of the RSW model parameters. In so doing, we start with QG modons as beginnings
of sequences of solutions that end in the sought-for ageostrophic modons. To establish
the transition from a QG regime to the RSW balance, it is expedient to present the
equations of §§ 2.1 and 2.2 in a non-dimensional form. Let the modon translation
speed U be the velocity scale; h∗ = Lf U/g′, the scale for the deviation h of the active-
layer thickness (found via the assumption that the Coriolis acceleration and that due
to the gradient of h are of the same order of magnitude); and the modon radius L,
the horizontal length scale. In such non-dimensional variables, (4)–(6) become:

Ro

[
(u − 1)

∂u

∂x
+ v

∂u

∂y

]
− v +

∂h

∂x
= 0, (19)

Ro

[
(u − 1)

∂v

∂x
+ v

∂v

∂y

]
+ u +

∂h

∂y
= 0, (20)

ε

[
(u − 1)

∂h

∂x
+ v

∂h

∂y

]
+ (1 + εh)

(
∂u

∂x
+

∂v

∂y

)
= 0, (21)

where the previous notations are retained for the non-dimensional variables. The
non-dimensional parameters appearing in (19)–(21) are:

ε =
h∗

H0

, Ro =
U

Lf
=

1

Λ2
ε, Λ =

L

LR

, (22)

where Λ is the modon radius relative to the Rossby deformation radius LR =
√

g′H0/f,

so that 1/Λ2 is the Burger number. According to (22), the Rossby number Ro and
the typical relative variation of the layer thickness, ε, are proportional to each other
with the factor of proportionality, the Burger number, being a function of the modon
size. The non-dimensional layer thickness, H = 1 + εh, must be positive; otherwise the
problem set-up becomes unphysical and mathematically incomplete. This restriction
imposes some constraint on the modon parameters discussed in § 5.

Once the length, thickness variation, and velocity scales are specified as L, h∗

and U , the scales for Ψ , B and P become UH 0L, UfL and f/H0, respectively. In
non-dimensional variables defined in this way, equations (10), (13), and (14) remain
unchanged, whereas (7)–(9), (11) and (12) convert into

(u − 1)(1 + εh) = −∂Ψ

∂y
, v(1 + εh) =

∂Ψ

∂x
, (23)

B = Ro

[
(u − 1)2

2
+

v2

2

]
+ h + y =

Ro

2

1

(1 + εh)2

×
[(

∂Ψ

∂x

)2

+

(
∂Ψ

∂y

)2]
+ h + y = F (Ψ ), (24)

P = RoQ + 1 =
dF (Ψ )

dΨ
, (25)

Q =
1

1 + εh
(ζ − Λ2h) =

�Ψ

(1 + εh)2
− ε

1

(1 + εh)3

(
∂h

∂x

∂Ψ

∂x
+

∂h

∂y

∂Ψ

∂y

)
− Λ2 h

1 + εh
.

(26)

Below, we deal with the non-dimensional variables unless otherwise stated.
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3. RSW modon design
3.1. Quasi-geostrophic modon prototype

Localization of a modon means that, as x, y → ∞, variables u, v, h go to zero fast
enough to guarantee finiteness of the modon energy. Accordingly, Ψ → y as x, y → ∞.
The latter implies that, at infinity, the flow considered in the co-moving frame of
reference tends to a uniform flow with the non-dimensional velocity −1 along the
x-axis. For the sake of asymptotic analysis, it is convenient to represent Ψ as a
superposition

Ψ = ψ + y, (27)

where the streamfunction anomaly ψ is supposed to vanish at infinity.
The QG regime is obtained as Ro → 0 and ε → 0 at a fixed Λ. As may be seen

from (19), (20) and (27), in the QG limit the flow is non-divergent, and h = ψ is
the streamfunction for the (u, v)-flow. In this limit, according to (23), B =h + y =
ψ + y =Ψ , so that relation (13) becomes trivial, whereas (26) implies:

Q = �Ψ − Λ2h = �h − Λ2h = �ψ − Λ2ψ. (28)

The simplest QG modon solution to (14), (27) and (28) is based on the assumption
that Q is zero outside a circle of radius 1 and is proportional to Ψ inside it with a
negative coefficient of proportionality −A2:

�ψ − Λ2ψ =

{
−A2(ψ + y), r < 1,

0, r � 1.
(29)

The corresponding solution written in non-dimensional variables is:

ψ = h =

⎧⎪⎪⎨
⎪⎪⎩

[
Λ2

Π2

J1(Πr)

J1(Π)
− r

(
1 +

Λ2

Π2

)]
sin θ, r < 1,

−K1(Λr)

K1(Λ)
sin θ, r � 1.

(30)

In (29) and (30), r and θ are the polar coordinates, J1 and K1 are the first-order

Bessel and Macdonald (modified Bessel) functions, and Π =
√

A2 − Λ2. Solution
(30) suggested by Larichev & Reznik (1976a, b) for a free-surface QG β-plane is
reproduced here in the particular case of β = 0 (see also Reznik 1992). In substance,
(29) is an eigenvalue problem with a countable spectrum of eigenvalues −Π2. Given
Λ, the spectrum of Π (and, therefore, A) values is determined by the so-called modon
dispersion relation that secures the continuity of ψ =h and their first derivatives at
r = 1:

ΠJ1(Π)

J2(Π)
= −ΛK1(Λ)

K2(Λ)
, (31)

(here J2 and K2 are the second-order Bessel and Macdonald functions). The solution
based on the smallest root of (31) represents a dipolar modon. In terms of dimensional
ψ or h, the QG modon solution is obtained by multiplying the right-hand side of
(30) by UH0L or Lf U/g′, respectively, and replacing r with r/L, which implies the
replacement of the inequalities r < 1 and r � 1 with r <L and r � L. Thus, because
Λ =L/LR , this solution is determined by a pair of dimensional parameters U and L.
Clearly, (30) and (31) can be interpreted as an approximate solution to the system of
equations (4)–(6) at small Ro and ε. This is used in the numerical search for RSW
modons (§ 4).
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3.2. Separatrix

As noted above, because the modon is localized and propagates steadily, its far-field
flow considered in a co-moving frame of reference is nearly uniform. Therefore, there
must exist a separatrix Γ , a closed contour that demarcates the interior (or trapped-
fluid) region where streamlines are closed, and the exterior region in which streamlines
are open and go to straight lines as r → ∞ (Larichev & Reznik 1976a; Flierl et al.
1980; Kizner 1997). In principle, the separatrix form can be set variously. In most
of the QG modon solutions found so far, the separatrices are circular or elliptical
(see § 1 for references). Just as in QG modons, the exterior and interior solutions
for an RSW modon are constructed separately and are matched at the separatrix so
as to guarantee the continuity of physically meaningful variables Ψ , u, v, h, B , and
the first derivatives of h. In fact, satisfaction of part of these conditions affords the
fulfilment of the remaining ones (see §§ 3.3.1 and 3.4). To minimize the number of free
parameters of the problem and to allow the Fourier expansion in the azimuth angle
θ , we shall follow the example considered in § 3.1, i.e. confine ourselves to the case of
a circular separatrix of radius r = 1.

As with QG modons, function F in the exterior region of an RSW modon is
specified uniquely by the asymptotics of (7)–(9) at x → ∞; this provides the equations
for the exterior domain. In the interior domain, function F can be different for
different modon solutions (or, more specifically, for different ε, Λ, and the separatrix
forms). Thus, in general, inside contour Γ , the solution should be described by (4)
and (5) written in terms of Ψ and h. Handling of the exterior and interior regions is
described in more detail in the next two sections.

3.3. Exterior domain

3.3.1. Governing equations and boundary conditions

In this section, all variables correspond to the exterior region, outside the separatrix.
At infinity (x → ∞), where the flow becomes uniform, Q =0 and B = y + Ro/2
(this is because u, v, h, ψ → 0, and Ψ → y as x → ∞). Owing to the energy and
PV conservation, along the open streamlines, functions B and Q must assume the
same values as at infinity. Therefore, according to (24), the functional equation
y + Ro/2 = F (y) holds, meaning that, throughout the exterior region,

F (Ψ ) = Ψ +
1

2
Ro. (32)

Equations (24) and (32) yield:

Ro

2

{
1

(1 + εh)2
(∇Ψ )2 − 1

}
− Ψ + h + y = 0, (33)

while the condition Q =0 combined with (26) implies:

�Ψ

1 + εh
− ε

1

(1 + εh)2
∇h · ∇Ψ − Λ2h = 0. (34)

It is readily verified that, in the exterior region, (23), (33) and (34) (and, therefore, (13)
and (14)) are equivalent to (19)–(21). Thus, (33) and (34) supplemented with proper
boundary conditions fully determine the exterior structure of the solution sought.

The boundary condition which the exterior solution must obey at the separatrix Γ

is:

Ψ = C at r = 1, (35)
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where C is an arbitrary (for the moment) constant. The conditions at infinity are

ψ → 0 (i.e. Ψ → y), h → 0 as r → ∞. (36)

Noticeably, as distinct from the QG limit (29), the system of equations and boundary
conditions (33)–(36) for the exterior region is nonlinear and quite complex. Therefore,
it is handled numerically. In so doing, (33) and (34) are written in polar coordinates,
while parameter C is varied to find a solution with a continuous PV and smooth B

fields.

3.3.2. Asymptotics for r → ∞
Although we cannot prove rigorously the existence of solutions to the problem

determined by (33)–(36), there are some solid arguments in favour of their existence.
In § 5, we present a variety of modons found numerically. These solutions fall off at
the periphery and satisfy (33)–(36) (as well as the equations and boundary conditions
for the interior domain) at quite a high accuracy in a large bounded region r � R

(where R 	 1). In § 5, we also discuss the limitations allowing the existence of smooth
modons. At this juncture, to make certain that conditions (36) are, in principle,
feasible, and to reveal the degree of localization of an RSW modon, we consider the
asymptotic behaviour of the solutions for r → ∞.

Assuming ψ → 0 and h → 0, (33) and (34) can be linearized to yield

Ro

(
∂ψ

∂y
− εh

)
− ψ + h = 0 (37)

and

�ψ − ε
∂h

∂y
− Λ2h = 0. (38)

By employing (37), h can be expressed in terms of ψ . Substituting this expression
in (38) we arrive at the following equation that describes the asymptotic behaviour
of the modon solution at small h and ψ , or more specifically, far away from the
separatrix (as r → ∞): (

1 − ε2

Λ2

)
∂2ψ

∂x2
+

∂2ψ

∂y2
− Λ2ψ = 0. (39)

At ε/Λ < 1, by normalizing the x-coordinate with
√

1 − ε2/Λ2, (26) transforms into a
Helmholtz equation that has solutions dying out exponentially as r → ∞. At ε/Λ > 1,
(39) becomes a telegraph (Klein–Gordon) equation that has no highly localized
solutions.

Thus, a necessary condition for the existence of (exponentially) localized modon
solutions is ε/Λ � 1 or, what is the same, RoΛ � 1, or Roε � 1. In other words, this is
a necessary condition for the existence of two-dimensional RSW solitons. In view of
(22), this condition can be interpreted as a restriction on the (dimensional) translation
speed of a modon:

U �
√

g′H0 (40)

(because the modon is assumed to propagate in the x-direction, U is positive). Clearly,
any one-dimensional soliton will obey condition (40) (Li 2004).

The physical meaning of constraint (40) becomes clear if we consider the spectrum
of linear waves permitted in the RSW model (1)–(3). The spectrum consists of the
inertia–gravity harmonic waves, exp[i(kx + ly − ωt)], obeying the following dispersion
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relation between the frequency ω and wavenumbers k and l:

ω = ±
√

(k2 + l2)g′H0 + f 2. (41)

The absolute value of the phase speed of an inertia-gravity wave is |ω|/
√

k2 + l2; its
lower bound is reached in the short-wave limit, k2 + l2 → ∞, and is equal to

√
g′H0

the phase speed of gravity waves. Equations (1)–(3) allow only one type of wave,
inertia–gravity waves. In such systems, solitons can propagate at speeds that are
outside the range of phase speeds of possible linear waves. This condition ensures
that the localized structures do not radiate waves, thus remaining steady. In our case,
(40) asserts that a highly localized vortical structure can be stationary in a co-moving
frame of reference if it propagates at a speed different from the phase speeds of linear
inertia–gravity waves. Note that the translation speed U of an f -plane QG modon
(which is also highly localized) can be arbitrary since parameters Λ and Π do not
depend on U (see (30) and (31)). This arbitrariness of U is related to the fact that the
linearized QG version of (1)–(3), (∂/∂t)(∇2ψ − Λ2ψ) = 0, does not allow any waves.
This is, by the way, an important difference of f -plane QG modons from β-plane
QG modons: the latter are allowed to propagate only with speeds different from the
phase speeds of Rossby waves.

3.4. Interior domain and smooth solutions

It can easily be shown that, under the condition dB/dΨ = P , (13), (14) and (23)
are equivalent to (19)–(22). However, when solving (13) and (14) in a given domain
directly (by some numerical method), no additional functional condition of the above-
mentioned type can be imposed on B and Q: the functionals relating B and Q to Ψ

are determined a posteriori, i.e. once the solution to (13) and (14) is already found.
Therefore, when dealing with the interior region, we have to employ the original
equations (19), (20) and (23). In polar coordinates (which are used in computations)
these equations convert into

Ro

H

[
∂Ψ

∂r

∂

∂θ

(
1

H

∂Ψ

∂r

)
− ∂Ψ

∂θ

∂

∂r

(
1

H

∂Ψ

∂r

)
− 1

rH

∂Ψ

∂r

∂Ψ

∂θ

]
− 1

H

∂Ψ

∂θ
+ r cos θ +

∂h

∂θ
= 0,

(42)

Ro

rH

[
∂Ψ

∂r

∂

∂θ

(
1

rH

∂Ψ

∂θ

)
− ∂Ψ

∂θ

∂

∂r

(
1

rH

∂Ψ

∂θ

)
+

1

H

(
∂Ψ

∂r

)2]
+

1

H

∂Ψ

∂r
− sin θ − ∂h

∂r
= 0

(43)

(for brevity, we use H for 1+ εh).
Equations (42) and (43) for the interior domain are supplemented with the following

boundary conditions at the separatrix Γ (i.e. at r = 1):

H (In)|Γ = H (Ex)|Γ , Ψ (In)|Γ = C,
∂

∂r
Ψ (In)|Γ =

∂

∂r
Ψ (Ex)

∣∣∣∣
Γ

. (44)

Here and below, superscripts (In) and (Ex ) are used to distinguish the boundary
values of the variables corresponding to the interior and exterior regions, respectively.
Conditions (44) along with (35) secure the continuity of the layer thickness,
streamfunction and velocity. As may be seen from (11), these conditions also guarantee
the continuity of the Bernoulli function at Γ . Of course, the tangential derivative of
H at the separatrix is continuous. Moreover, the radial (normal to Γ ) derivative of h

is also continuous at the contour Γ . This follows from (43) since, in view of (35) and
(44), at the separatrix, ∂Ψ /∂θ = ∂2Ψ /∂θ2 = 0 and ∂Ψ /∂r is continuous.
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The term ‘smooth solutions ’ will be used to designate solutions where PV is
continuous everywhere on the (x, y)-plane, including the separatrix Γ . In principle,
a constant jump of PV across the separatrix can exist, being a function of
Ψ |Γ = C. A smooth solution is found by varying parameter C. According to (25),
the condition of continuity of P at the separatrix is equivalent to the condition
dF (Ψ (In))/dΨ (In) =dF (Ψ (Ex))/dΨ (Ex) at Ψ (In) = Ψ (Ex) = C. Owing to (8), the latter
means that, in a smooth modon, the Bernoulli function is continuously differentiable,
i.e. smooth. Smooth solutions are of the utmost interest because of their potential
stability (Kizner et al. 2003a, b). Therefore, in § 5, only smooth modon solutions are
presented.

4. Numerical implementation
4.1. Successive-linearization iterative procedure

To solve the exterior problem (33)–(36) and interior problem (42)–(44), we adopt a
successive linearization (Newton–Kantorovich) iterative procedure and a collocation
method with Fourier–Chebyshev spectral representation of h and Ψ . For the
construction of modon solutions in classical two-dimensional hydrodynamics, this
approach was first used by Boyd & Ma (1990); the theory and applications of
Fourier–Chebyshev polynomials are described in detail by Boyd (2001). In the same
way as was done by Kizner et al. (2003a, b) and Khvoles et al. (2005), the volume
of computations will be reduced by assuming the symmetry about the y-axis of the
solutions sought:

h(x, y) = h(−x, y), Ψ (x, y) = Ψ (−x, y). (45)

For this reason, h and ψ are approximated by truncated Fourier–Chebyshev series,
or polynomials, as∑

0�n+2m�N−1

Tn(r)am,n cos(2mθ) +
∑

0�n+2m�N−2

Tn(r)bm,n sin[(2m + 1)θ], (46)

where n � 0 and m � 0 are integers, Tn(r) is an n-degree Chebyshev polynomial in r ,
and N − 1 is the highest allowed degree.

There are at least two options for dealing with the exterior semi-infinite region.
The first way is using the so-called ‘shifted Chebyshev polynomials’ defined on a
finite interval [1, R] with R 	 1. (The term ‘shifted’ is conventionally used when r

ranges in an interval different from [−1, 1].) An alternative way is to use the so-called
‘rational Chebyshev polynomials’ defined on a semi-infinite interval [1, ∞) and based
on rational functions of r . In spite of the exponential decay of the exterior solution
at infinity, both modes are appropriate to handle the problem in a finite sub-domain
1 <r � R of the semi-infinite (in r) exterior region (cf. Boyd 2001). By trial, the second
mode was chosen, because it leads to somewhat more accurate results, in particular,
to a better estimate of ∂Ψ /∂r at r = 1 (accuracy criteria are discussed in § 4.2 and also
in § 5.1). Rational Chebyshev polynomials satisfy conditions (36) automatically. Thus,
we require fulfilment of the boundary condition (35) only. In the interior domain,
shifted Chebyshev polynomials are employed defined on the interval [0, 1].

The Newton–Kantorovich iterative procedure, in essence, consists in the following.
Let i � NI be the iteration index and NI, the number of iterations (tolerance). At
the beginning of computations, at i = 0, the initial guess of the solution sought, i.e.
the pair of functions h0 and Ψ0, is specified and approximated in the form (46). Once
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approximation i is known, the next approximation, i +1, is given by

Ψi+1 = Ψi + ϕ, hi+1 = hi + η, (47)

where, the corrections ϕ and η are supposed to be small relative to Ψi and hi ,
respectively. For the exterior flow, these corrections must satisfy the inhomogeneous
linear equations obtained by substitution of (47) into (33) and (34) and by linearization
of the resulting equations with respect to ϕ and η. Accordingly, when dealing with
the interior, equations, (42) and (43) are linearized. Boundary conditions (35) and (44)
must be written in terms of ϕ and η as well.

Theoretically, the Newton–Kantorovich procedure applied to a nonlinear operator
equation converges if the operator satisfies some smoothness conditions, and the initial
guess is chosen close enough to the solution sought. The convergence is apparent in
that the free terms in the linear equations tend to zero as i goes to infinity. The results
of our computations presented below demonstrate that, normally (where the existence
of a solution is expected), this procedure supplemented with the Fourier–Chebyshev
approximation and collocations also converges. In fact, we run two procedures, one
for the exterior and the other for the interior domain. As soon as the first procedure
converges and the exterior solution is found, boundary conditions (44) for the interior
problem are determined.

Preliminary runs have shown that, because of the use of polar coordinates, the
accuracy of computation of Q in the near vicinity of the origin (r = 0) is relatively
low. To improve the situation, we supplement the pair of linearized equations (42)
and (43) for the interior domain by the linearized version of (14). This system of three
equations is consistent, because (14) is a corollary of (42) and (43). Numerically, such
an addition suppresses the unwanted effects in the vicinity of the origin, making the
errors in this domain of the same order as everywhere in the circle r � 1.

We start by constructing a solution under the conditions which are quite close to
those of the quasi-geostrophic approximation. Namely, we set Λ ∼ 1 and ε � 1 and,
as the initial guess, use a free-surface quasi-geostrophic dipolar modon solution given
by (30) and (31). Then, gradually increasing ε, we use the previously found solution
as an initial guess for the next solution. This is done for Λ ranging from 0.5 to 5.

4.2. Collocation and accuracy

To solve the linear problems formulated above, we apply the collocation method,
i.e. require the fulfilment of the equations and boundary conditions in a finite set of
external, internal and boundary points. The numbers of grid nodes in the exterior and
interior regions are set the same. Owing to the symmetry of the solution about the y-
axis, only the right half-plane is considered. To discretize the problem, we cover both
the exterior and interior regions with M radial rays (M >N ) uniformly distributed in
the range −π/2 � θ � π/2; the set of rays contains those at which all the functions
cos(2mθ) and sin(2m+1)θ are orthogonal in the discrete sense. Along each ray, a chain
of M nodes is determined, containing the points on which Chebyshev polynomials are
orthogonal. All in all we have the same number KG =M2 of grid nodes in either the
exterior and interior regions. In addition, we distribute uniformly KB points over the
separatrix (again at −π/2 � θ � π/2), setting KB >N . We then consider the two linear
equations corresponding to the exterior domain at each point of the exterior grid and
also at the boundary points, thus obtaining a system of 2(KG +KB) equations. Along
with the boundary condition imposed on ϕ at KB boundary points, we arrive at a
system of 2KG + 3KB linear equations for the exterior region. Because the number of
unknown polynomial coefficients is N(N +1) (see (46)), the total number of equations
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NI RMS Res Eq Max Res Eq RMS Res B Max Res B

1 0.0251 0.0138 5.80 × 10−8 1.10 × 10−7

2 1.30 × 10−4 6.85 × 10−4 3.55 × 10−8 9.40 × 10−8

3 6.19 × 10−7 2.98 × 10−6 1.34 × 10−9 2.07 × 10−9

4 6.19 × 10−7 2.97 × 10−6 1.29 × 10−9 2.07 × 10−9

Table 1. Accuracy characteristics at the output of the exterior iterative procedure (Λ= 1,
ε = RO = 0.1). The root-mean-square and maximal residuals in the pair of linearized equations
(33) and (34), RMS Res Eq and Max Res Eq, and in the fulfilment of boundary condition
(35), RMS Res B and Max Res B.

NI RMS Res Eq Max Res Eq RMS Res B Max Res B

1 0.0921 2.744 0.0269 0.0481
5 4.43 × 10−5 3.13 × 10−4 6.19 × 10−5 1.11 × 10−4

10 5.98 × 10−6 3.121 × 10−5 1.58 × 10−5 2.93 × 10−5

15 3.56 × 10−6 2.164 × 10−5 1.23 × 10−5 1.87 × 10−5

20 3.47 × 10−6 2.011 × 10−5 1.21 × 10−5 2.01 × 10−5

Table 2. Accuracy characteristics at the output of the interior iterative procedure (Λ= 1,
ε = R = 0.1). The root-mean-square and maximal residuals in the pair of linearized equations
(42) and (43), RMS Res Eq and Max Res Eq, and in the fulfilment of boundary conditions
(44), RMS Res B and Max Res B.

exceeds the number of unknowns. The matrix of this overdetermined linear system
and the vector of free coefficients (residuals) depend on the iteration index i. At each
iteration step, this linear system is solved in the least-squares sense. In a similar way,
when considering the interior domain, we obtain 3KG + 6KB linear equations and
solve them in the least-squares sense.

We estimate the accuracy of the numerical method based on the following criteria.
First, in the scatter-plots of Q vs. Ψ and B vs. Ψ , the scattering of points must be
reasonably small, testifying to the existence of functional dependences of Q and B

on Ψ . Secondly the computed derivative of B as a function of Ψ must be close to
the apparent functional dependence of P on Ψ . Thirdly at the end of the iterative
process, the residuals must be sufficiently small.

The accuracy of the computational procedure is a function of its parameters: the
radius R of the circle chosen for computations, the number KG of grid nodes (in the
interior and exterior regions), the number of boundary points, KB , the polynomial
degree, N , and the number NI of iterations made (tolerance). It also depends on the
physical parameters Λ and ε of the problem. The stronger the ageostrophicity, the
lower the accuracy; this conclusion is valid if all other parameters are fixed. At a
fixed Λ, the accuracy decreases with increasing ε. At given Λ and ε, the accuracy
generally increases with increasing number of iterations NI.

Through the boundary conditions, the errors present in the exterior solution
influence the accuracy at which the interior problem is solved. Thus, good convergence
of the exterior procedure is essential for the good quality of both the exterior and
interior solutions. A different number of iterations, NI, is required for a reasonable
convergence in the interior and exterior domains. In the exterior procedure, the errors
decrease considerably when NI is increased from 1 to 3, and less rapidly when it is
increased from 3 to 5 (table 1). In the interior procedure, the errors decrease quite
rapidly during the first 15 iteration steps, and less rapidly when NI is increased from
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15 to 20 (table 2). In the headings of tables 1 and 2, the following notations are
used: RMS Res Eq is the root-mean-square residual in the right-hand side of linear
equations for the exterior or interior domain at the output of the iterative process;
Max Res Eq, the corresponding maximum absolute residual. Analogously, RMS Res
B and Max Res B denote the residuals in the fulfilment of the boundary condition
for the exterior and interior solutions.

Our tests show that satisfactory results are obtained with the following parameters:
R = 6, M = 50, KB =300, N = 14. The tolerance, NI, is fixed as 7 for the exterior
procedure, and 20 for the interior procedure. These parameters fitted by trial at the
stage of tuning the model are used to compute all the solutions presented below.

5. Results and discussion
5.1. Modon characteristics and accuracy estimates

The central question of our work is whether the RSW modon solutions exist.
Employing the method described in § 4, we managed to construct the solutions
with required properties. These modon solutions satisfy equations (19)–(21) to within
small errors and exist in some domain of the three-dimensional parameter space (Λ,
ε, C).

As mentioned above (§ 3.4), in general, the PV in an RSW modon solution is
continuous everywhere on the (x, y)-plane, except the separatrix. Along the separatrix,
the interior and exterior PV is constant, but across the separatrix, a jump of P may
occur. At a given pair Λ, ε this jump, [P ]Γ = Ro[Q]Γ = Ro(Q(Ex)|Γ − Q(In)|Γ ), depends
on parameter C that appears in boundary conditions (35) and (44). Our computations
reveal that (at least for dipolar solutions) [P ]Γ is a monotonic function of C that,
for a continuum of pairs (Λ, ε), changes the sign. Thus, for each pair (Λ, ε) within a
certain domain in the (Λ, ε)-plane, a unique smooth dipolar modon solution exists,
determined by a particular C. In other words, the family of smooth circular RSW
modons is two-parameter: the non-dimensional parameters determining a modon are
Λ and ε, and the corresponding dimensional parameters are L and U . Below, only
smooth solutions are discussed.

Once the question of existence of RSW modons is answered positively, the key
questions become the following.

(i) How does deviation from quasi-geostrophicity affect the modon structure for a
spectrum of modon sizes and translation speeds?

(ii) What values of L and U (or Λ and ε) permit the existence of smooth modon
solutions?
To answer these questions, we ran computations with different combinations of the
values of Λ and ε. Condition (40) stating that an RSW modon must propagate more
slowly than inertia–gravity waves, poses the theoretical upper bound to the translation
speed of any modon. One may anticipate that the conditions for the existence of
smooth modons will impose an even stronger restriction on the translation speed.
Therefore, in the context of question (ii), it will be only natural to interpret our results
in terms of the translation speed normalized with the phase speed of gravity waves,
Ũ = U/

√
g′H0. Clearly, the non-dimensional parameter Ũ can be expressed in terms

of Λ and ε, or Λ and Ro; namely, Ũ = ε/Λ = RoΛ.
The main results are summarized in figures 1–6 (all variables are non-dimensional).

Figures 1–3 represent three f -plane RSW smooth modons of the same size Λ =1
at Ro = ε = Ũ =0.04, 0.12, 0.2. In all cases, the modon consists of two vortices, a
cyclone and anticyclone. The cyclone is characterized by a larger peak absolute value
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Figure 1. Characteristics of the smooth modon solution at Λ= 1 and Ro = ε = Ũ = 0.04
(C ≈ 0.05357). (a) Contours of the co-moving streamfunction Ψ ; (b) contours of the layer
thickness deviation h; (c) contours of ψ = Ψ − y; (d) contours of PV; (e) PV vs. Ψ scatter-plot;
(f ) B vs. Ψ scatter-plot; (g) cross-section of PV along the y-axis; (h) cross-section of h along
the y-axis; (i) cross-section of the layer thickness, H = 1 + εh, along the y-axis. Iso-contours in
(a)–(d) are given at a 10%-step of the maximum; black line, zero contour. In (e) and (f ), the
straight blue lines correspond to the exterior region, and the curved blue lines, to the interior.
The chain of red points in (e), interior dB/dΨ vs. Ψ relation (computed by a direct numerical
differentiation of the function B(Ψ )).

of PV and a stronger deviation of the active-layer thickness from the ambient level.
Figures 4 and 5 represent the peak values of the modon PV in the cyclone, Pmax, and
the minimal layer thickness, Hmin, respectively, as functions of Ũ at different Λ. In
figure 6, the domain on the (Ũ , Λ)-plane is shown, where the modon solutions exist.
Note that, at Λ =1, the modon radius is equal to the Rossby deformation radius
LR (which appears relevant to mesoscale eddies in the ocean and atmosphere), while
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Figure 2. Characteristics of the smooth modon solution at Λ= 1 and Ro = ε = Ũ = 0.12
(C ≈ 0.16232). Notations as in figure 1.

setting, for example, Λ = 0.5 or 2 means that the modon radius is half the size or
twice as big as LR .

A reliable verification of the accuracy, at which the modon solutions is obtained,
is provided by scatter-plots of P vs. Ψ and B vs. Ψ A visual indication of relatively
high accuracy achieved with the use of our numerical method is that the points
(P , Ψ ) and (B , Ψ ) in the scatter-plots (figures 1e, f , 2e, f , and 3e, f ) cluster densely
around the straight lines that represent the exterior solution, and around the curved
lines representing the interior solution. As predicted by the theory ((24) and (25)), the
graph of function dB/dΨ fits well that of P (Ψ ) (figures 1e, 2e, 3e). The derivative
is computed by dividing the range of Ψ values into a number of small equally long
intervals, calculating the mean values of B and Ψ for the points (B , Ψ ) falling into
each interval, and estimating the derivative at the end of each interval as the ratio
of differences of neighbouring means. In terms of the scatter-plots, the smoothness
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Figure 3. Characteristics of the smooth modon solution at Λ= 1 and Ro = ε = Ũ = 0.2
(C ≈ 0.25170). Notations as in figure 1.

of the solutions found is evidenced by the fact that, in figures 1f , 2f and 3f , the
straight lines representing the B vs. Ψ dependence in the exterior region are apparently
tangent to the curved lines representing this dependence in the interior region. The
continuity of the PV field can also be judged from the PV cross-sections shown in
figures 1g, 2g and 3g. Regarding the integral mass anomaly which is supposed to be
zero (§ 2.3), the accuracy is also reasonable. In fact, while the two integrals of |h| over
the areas, where h is positive and negative, are of the order of 1 each, the difference
between the two integrals ranges approximately from 0. 04% (at ε = Ro = 0.04) to 3%
(at ε = Ro = 0.2) of the overall integral of |h|. Yet, it is as well to bear in mind that,
in spite of the fast decrease of h at infinity, the far field may contribute considerably
to the integral mass anomaly (and, as figures 1h–3h show, the larger ε = Ro, the
stronger this contribution in the anticyclone mass anomaly). Therefore, the modon
mass anomaly might be expected to be sufficiently close to zero only if computed
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Figure 4. Peak values of PV vs. Ũ . a, Λ= 0.5; b, Λ= 1; c, Λ= 2.

Mean Res Mean Res
ε Exterior Interior Mean (Ψ ) Mean (h) Mean (∂Ψ /∂r) Mean (P )

0.04 5.90 × 10−7 9.64 × 10−5 4.22 × 10−6 1.05 × 10−5 1.14 × 10−4 3.16 × 10−5

0.12 6.10 × 10−7 1.73 × 10−4 2.72 × 10−4 2.50 × 10−4 1.52 × 10−3 1.14 × 10−3

0.20 1.91 × 10−6 9.64 × 10−4 3.86 × 10−3 2.01 × 10−3 8.36 × 10−3 1.24 × 10−2

Table 3. Accuracy characteristics of the solutions shown in figures 1–3 (Λ= 1). The
root-mean-square residuals in the fulfilment of equations in the exterior and interior domains
(first two columns) and discrepancies in the fulfilment of boundary conditions at the separatrix.

over a appreciably larger area on the (x, y)-plane. We, however, construct numerical
solutions in a circle r � 6, which makes impossible a genuine estimation of the overall
mass anomaly. Some additional accuracy estimates for the solutions shown in figures
1–3 are provided in table 3.

5.2. Size and speed dependence and a solvability bound

At relatively small values of Ro = ε and, hence, of Ũ (figure 1) the ageostrophic effects
are small. Therefore, the solution obtained appears similar to a quasi-geostrophic
modon, (30) and (31). The layer-thickness deviation h and streamfunction fields ψ

and Ψ are nearly anti-symmetric relative to the x-axis (figure 1 a–c, h, f ), the
contours of h and ψ being almost identical (figure 1b, c). The relative thickness
deviation εh is small (figure 1i), and nonlinearity of the interior PV vs. Ψ relation
is weak (figure 1e). The latter corresponds well with the recent finding (Kizner et al.
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0 1 2 3V 4 5

0.1

0.2

0.3

~
Usup

Figure 6. The upper bound of the translation speeds of smooth modons, Ũ = Ũsup(Λ).



Shallow-water modons on the f -plane 325

2003a, b; Khvoles et al. 2005) that, in the quasi-geostrophic approximation (or in
classical two-dimensional hydrodynamics), circularity of the separatrix and linearity
of the interior PV vs. Ψ relation are equivalent properties of a modon.

Comparison of figures 1–3 shows that growing ageostrophicity, resulting from the
increase of Ro (i.e. of Ũ ) at a fixed Λ, destroys the antisymmetry of the solution about
the x-axis. The difference between the h- and ψ-fields, as well as the nonlinearity
of the interior PV vs. Ψ relation, increases. The amplitudes of variation of the layer
thickness H in each vortex grow, the peak value of |h| in the cyclone being larger
than that in the anticyclone. Accordingly, to keep the mass anomaly zero (see (18)),
the anticyclone expands and the cyclone contracts with increasing Ũ . Thus, in terms
of PV, one of the two vortices constituting the modon, the cyclone, enhances while
the layer thickness in this vortex decreases.

Qualitatively, the difference between the cyclone and anticyclone in an RSW vortex
pair can be explained by considering a stationary axisymmetric vortex, a cyclone
or anticyclone, which is in the gradient–wind balance (see also Konshin & Shapiro
1988):

f vθ +
v2

θ

r
= g′ ∂h

∂r
. (48)

Here, vθ is the azimuthal velocity in polar coordinates with the origin in the centre
of the vortex; (48) can be derived from (1), (2). From (48) it follows that, if a cyclone
and anticyclone are antisymmetric in terms of h, the revolution of fluid particles
in the anticyclone is faster than in the cyclone. This is because, in the cyclone, vθ

and ∂h/∂r are both positive, while in the anticyclone they are negative. [In terms
of geostrophic adjustment, the cyclone–anticyclone asymmetry was demonstrated by
Kuo & Polvani (2000). Based on conservation laws and using numerics, they showed
that equally strong circular pressure or velocity anomalies, whose profiles differ only
in sign, adjust in such a way that a balanced cyclone is stronger than the anticyclone.
Asymmetry between large-scale RSW cyclones and anticyclones was also observed
experimentally in the wakes past obstacles dragged in the upper layer of a two-layer
fluid (Perret et al. 2006).] Thus, as distinct from the QG approximation, if an RSW
pair cyclone–anticyclone were initially antisymmetric, the anticyclone would have been
propelling its counterpart faster than the cyclone. To put it differently, an RSW dipole
can propagate uniformly along a straight line only when the pressure (active-layer
thickness) profile in the cyclone slopes more sharply than in the anticyclone.

The tendencies revealed in the above discussion (figures 1–3) are confirmed by
computations in broad ranges of parameters Ũ and Λ. An informative characteristic
of an RSW modon is the peak value of PV, Pmax, which is assumed at the centre of
the cyclonic vortex (figures 1e, g–3e, g). A typical behaviour of the PV maximum as
a function of Ũ is presented in figure 4, where a monotonic increase of Pmax at a
given Λ and growing Ũ can be observed. Moreover, a characteristic feature of RSW
modons is that also ∂Pmax/∂Ũ increases monotonically (unlike QG modons, in which
the PV maximum depends linearly on the translation speed). If, on the other hand,
two modons propagate at the same speed, then the modon with a larger radius has a
larger Pmax. That is to say, of two modons of different size, the larger modon should
have a larger Pmax in order to move with the same speed as the smaller modon.

The intensification of the cyclonic vortex with increasing Ũ at a fixed Λ is associated
with a decrease in the minimal layer thickness, Hmin, in this vortex. Such a behaviour
of Hmin is demonstrated in figure 5. As expected, the cyclone in a larger modon is
shallower than the cyclone in a smaller modon at the same speed Ũ . An important
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point is that Hmin rapidly decreases with increasing Ũ . This suggests that, for a fixed Λ,
at a certain Ũ = Ũsup(Λ), the layer thickness will vanish, while Pmax will go to infinity

as Ũ → Ũsup. The monotonic character of function Hmin = Hmin(Ũ ) along with the
fact that the problem set-up is relevant only for positive H lead us to the conjecture
that smooth modon solutions can exist only within the interval 0 < Ũ < Ũsup(Λ).

The results of our computations support the above conjecture. The upper bound
of the allowed Ũ -values is estimated in the following way. In fact, growing gradients
of P limit our ability to perform computations with Ũ which is too close to Ũsup(Λ).
Therefore, for each fixed Λ, we construct smooth solutions at gradually increasing ε

(i.e. increasing Ũ ) until Ũ reaches the maximal available value ŨM ; the values of Hmin

corresponding to ŨM are positive but rather small (figure 5). Next we extrapolate
function Hmin(Ũ ) to the point where it vanishes, and choose the corresponding value
of Ũ in the capacity of Ũsup(Λ). The resulting curve Ũ = Ũsup(Λ) is shown in figure 6.

It is obvious that Ũsup(Λ) monotonically decreases with increasing Λ, i.e. the bigger
the modon the narrower the range of allowed translation speeds. The largest value
of Ũsup(Λ) in figure 6 is reached at Λ = 0.5 (the smallest modon radius to which the
computations were run) and is approximately equal to 0.33. Thus, as expected, for all
smooth modon solutions found, the condition of non-negative thickness of the active
layer, 0 < Ũ < Ũsup(Λ), proves to be much more restrictive than the non-radiation

condition (40) which requires only that 0 <Ũ � 1.

6. Conclusion
This work has extended the family of modon solutions to the f -plane RSW model.

As with QG modons, there is a separatrix in an RSW modon. In a frame of reference
co-moving with the modon, the separatrix is the closed streamline demarcating the
interior (trapped-fluid) region, where the streamlines are closed, from the exterior
region, where the fluid passes around the modon. Although, in RSW modons, a PV
jump across the separatrix is allowed, our main effort went into the search for smooth
modons. A smooth RSW modon is distinguished by the continuity of its PV and
smoothness of velocity, pressure gradients, and energy as functions of x and y. Such a
modon normally appears as a pair of vortices of different rotation, a cyclone and an
anticyclone. In a fixed frame of reference, the velocity field associated with the modon
falls off exponentially at r → ∞. Thus, in fact, we are dealing with two-dimensional
solitons.

The total mass anomaly of an RSW modon is defined as the integral (over the
(x, y)-plane) deviation of the active-layer thickness from its ambient value. Just as
in QG modons, the mass anomaly of an RSW modon is zero. At the same time,
ageostrophic factors endow an RSW modon with new properties. First, unlike the
QG model, the f -plane RSW model permits inertia–gravity waves; therefore, to
preserve its parameters, i.e. to ensure the lack of wave radiation, an RSW modon has
to propagate more slowly than these waves. In other words, the modon translation
speed U is bounded from above by the phase speed of gravity waves,

√
g′H0. Secondly,

in the RSW modons with circular separatrices, the PV vs. Ψ relation is nonlinear in
the trapped-fluid area, whereas in QG circular modons it is necessarily linear. Thirdly,
the cyclone and anticyclone constituting an RSW modon have different form and
intensity, whereas in a QG modon, the cyclone and anticyclone are anti-symmetric (i.e.
differ only in sign). In an RSW modon, the cyclone is more intense and compact than
the anticyclone; the variation of the active-layer thickness and, therefore, the peak PV
in the cyclone are larger than in the anticyclone (in absolute value). Importantly, the
minimal layer thickness in the cyclone rapidly decreases with increasing U at a given
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modon radius L and vanishes at a certain speed. This imposes a more restrictive
condition on the allowed translation speed of a smooth modon, U < Usup(L). The
upper bound of the translation speed, Usup(L), monotonically decreases with increasing
radius L and is appreciably smaller than the phase speed of gravity waves,

√
g′H0. For

example, at L = 0.5LR (the minimal modon radius considered in our computations),
the boundary value Usup(L) is under 0.33

√
g′H0.

The modon solutions were sought numerically using the Newton–Kantorovich
iterative technique. Our approach comprising a few stages has some specific features
enabling an effective search for smooth solutions. First, we prescribe the modon
separatrix (a circle of radius L in our case), the translation speed U , and the constant
value C of the streamfunction at the separatrix. Next we set the pair of equations
that govern the exterior flow and require constancy of PV and linearity of the energy–
streamfunction relation. This exterior problem is solved with the use of Fourier–
Chebyshev polynomials and a Newton–Kantorovich procedure with collocation for
calculation of the polynomial coefficients. Given the exterior solution, the boundary
conditions for the interior solution at the separatrix are fully determined. This allows
the construction of the interior solution in a procedure similar to that used for
the exterior domain, but based on the original equations for a stationary flow in
a co-moving frame of reference. At given U and L, the family of modon solutions
depends on the single parameter C. By varying C, we arrive at the unique smooth
modon solution. Our results demonstrate the potency of this technique. By using
elliptic coordinates it can be extended to the search for modons with elliptical
separatrices (cf. Boyd & Ma 1990; Kizner et al. 2003a). We can anticipate that
among elliptical modons (that depend on four non-dimensional parameters Λ, ε, C,
and the ellipse aspect ratio), the so-called supersmooth modons can exist, categorized
by the smoothness of the PV field (cf. Khvoles et al. 2005). The methodological ideas
underlying this approach can be applied to seeking RSW modons on the β-plane or
in spherical geometry. They may also be applied, in later stages, to the search for
truly three-dimensional modon solutions of primitive equations.

As for the smooth f -plane RSW modons presented in this paper, we believe that
the next step should be testing of their stability in a numerical model with forward
integration in time. At small Rossby numbers, because of the geostrophic splitting,
a balanced solution will be stable relative to inertia–gravity waves in the sense that,
although a small perturbation will cause radiation of waves, the energy of the radiated
signal will remain small (e.g. Reznik, Zeitlin & Ben Jelloul 2001). However, for Rossby
numbers of the order of 1 it may not be the case. A question that can be asked in
this context is: If an RSW modon is unstable, will it disintegrate when subjected to
a small initial perturbation, or will it radiate inertia–gravity waves and, eventually,
adjust to a new balanced state?
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